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Abstract. The performance of a Kalman ®lter is essen-
tially limited by the description of the input noise and
therefore it is di�cult to improve the estimation proce-
dure within the framework of traditional estimation
theory. One way to further improve performance is to
describe the system in a deterministic sense for a mean-
ingful, but short duration of time. A method called the
modi®ed wave estimator (MWE) is used as an alternative
to a conventional Kalman ®lter, where the non-white
disturbances are modeled using simple curves or waves,
rather than shaping ®lters driven by known input noise
values. The major advantages of this method compared
to a conventional Kalman ®lter are that the estimation
accuracy is higher, especially for comparatively weak
observables, and is less sensitive to the description of
input noise. Results from an integrated global positioning
system (GPS)/GLONASS (Global Navigation Satellite
System) ± inertial navigation system (INS) test are used to
demonstrate the performance accuracy of the system
using both a Kalman ®lter and the MWE approach.
Results and their analyses are presented with emphasis on
situations where improved estimation can be achieved
using this new technique.
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1 Introduction

Kalman ®ltering has gained widespread use in applied
estimation and control due to its desirable characteris-
tics, such as minimization of average mean square errors
(MSE), and ease of recursion and implementation
(Brown and Hwang 1992). It renders optimal estimation

in such cases as a minimum mean square error (MMSE)
estimate, a maximum likelihood estimate (MLE), or a
maximum a posteriori (MAP) estimate (Gelb 1979;
Maybeck 1994). However, it is optimal only if the input
and measurement noise values are known accurately
and, in addition, the estimation quality is only as good
as the underlying model. Furthermore, in a Kalman
®lter, the weakly observed states require a longer time to
converge and thus estimates during this period yield
poorer results (Salychev 1995). At steady state the
estimation accuracy is limited by the input noise.

Non-conventional approaches proposed by Salychev
(1995, 1998), i.e. scalar and wave estimation techniques,
are precursors to the algorithm presented below. Scalar
estimation is not highly sensitive to the accuracy of the
mathematical model and input noise statistics, and
allows each of the state variables to be estimated sepa-
rately. In wave estimation, input disturbances are de-
scribed by pseudo-deterministic models which are valid
over a short time interval. The method described in this
paper is related to further developments and enhance-
ments of the wave estimation technique.

Kalman ®lters have been applied to global position-
ing system±inertial navigation system GPS±INS inte-
gration in many cases over the past decade. The
advantages of integrating GPS with INS are discussed
by Cox (1980) in terms of improved solution accuracy,
aided acquisition and tracking, as well as adaptive
tracking. Several authors have described various ways to
integrate GPS with INS. For example, Callender (1989)
integrated a Ferranti FIN 1041 INS with a P-code re-
ceiver using a Kalman ®lter for airborne applications,
while Diesel (1988) described an INS-aided GPS integ-
rity monitoring system. Eissfeller and Spietz (1989)
examined the accuracy potential of Honeywell's strap-
down laser inertial system to aid kinematic GPS using
feed-forward and feedback Kalman ®lters, while Can-
non (1992) achieved accuracies of 5 cm for an integrated
road positioning system. Lapucha et al. (1990) devel-
oped a highway survey system using a ring-laser gyro
INS integrated with a di�erential carrier-phase GPSCorrespondence to: M.E. Cannon
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system, while Wei and Schwarz (1990) devised di�erent
decentralized Kalman ®lter con®gurations which are
¯exible to integrate GPS, INS and other sensors. In all
cases, Kalman ®lters of various forms were used. Fun-
damentals of INS can be found in Britting (1971) on a
comprehensive review of GPS and inertial integration is
available in Greenspan (1996).

In this paper, the concept of a modi®ed wave esti-
mator (MWE) is presented and compared to a conven-
tional Kalman ®lter in order to evaluate the accuracy
performance of a GPS/GLONASS±INS (Global Navi-
gation Satellite System) system using both estimation
techniques.

2 Modi®ed wave estimation

The MWE technique was described by Salychev (1995)
and is based on the principle that input disturbances
can be described by deterministic means for short time
periods. Instead of using a shaping ®lter driven by white
Gaussian noise, the MWE models input disturbances as
known base functions with unknown intensities which
can be estimated (see Figs. 1 and 2).

A similar technique is described by Lichten (1990)
with regard to the GPS inferred positioning system
(GIPSY), a multi-satellite batch sequential pseudo-ep-
och state process noise ®lter for estimation of GPS sat-
ellite orbits and other parameters. In this method, the
®lter divides the measurements into ®nite time intervals,
known as batches, during which all the process noise
parameters are assumed to be piecewise constant. After
®ltering is complete, a smoother works recursively
backwards in time to optimally update the computed

estimates and covariances. Another method that is
related to MWE is the Schmidt±Kalman ®lter (Brown
and Hwang 1992) wherein only the desired states are
estimated, taking into account the in¯uence of other
non-estimated states.

In MWE, the input disturbance can be represented
as follows:

w�t� � c1f1�t� � c2f2�t� � � � � � cnfn�t� �1�
where w�t� is the input disturbance, f1�t� . . . fn�t� are
known base functions, e.g. horizontal lines, inclined
lines, exponential functions and c1 . . . cn are unknown
coe�cients which vary from one instant in time to the
next.
The system is represented as

xk � Uk;kÿ1xkÿ1 � dkÿ1 �2�
and the measurement model assuming a stationary
process is given as

zk � Hxk � vk �3�
where

xk is the total state vector
Fk,k)1 state transition matrix
dk)1 consists of impulse functions appearing once

every N time steps. Their intensities are the
same as the unknown coe�cients of the wave
description

zk measurement vector
H observation matrix
vk white Gaussian measurement noise with zero

mean and known covariance Rk.

Using Eqs. (1)±(3), it is possible to describe the system in
a deterministic sense during a short time interval NT,
where T is the sampling period and NT is called the cycle
time. The main issue is then the selection of an
appropriate cycle time. A small cycle time allows a
more accurate representation of the system, but it may
not be su�cient for all the state vectors to converge. On
the other hand, a large cycle time ensures convergence,
but may degrade the estimation accuracy. A more
prudent approach is to segregate the state variables
into two groups based on their degree of observability.
The observability condition is de®ned as the ability to
determine the state variables from the given measure-
ments (Gelb 1979). In this approach, the ®rst group is
comprised of all the strongly observed states, normally
the basic system model, and the second part comprises
all the weakly observed states, normally the state
variables for wave representation. It is then possible to
have a shorter wave cycle ensuring convergence of only
the strongly observed states. Weakly observed states,
even though not converged during the cycle time, can be
estimated separately in a second group.

Through separation, the basic system model has two
components in a wave cycle. The ®rst component is the
in¯uence of the strongly observed states on themselves
and the second component is the in¯uence of the weakly
observed states on the strongly observed states. There-

Fig. 1. Shaping ®lter representation of input disturbances in a
conventional Kalman ®lter

Fig. 2. Wave representation of input disturbances in the modi®ed
wave estimator
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fore, the basic model of the system can be completely
described as

xk � x0k � x1k �4a�
with initial condition x00 � x0; x10 � 0

x0k � Uk;kÿ1x0kÿ1
x1k � Uk;kÿ1x1kÿ1 � Gekÿ1
ek � Lk;kÿ1ekÿ1

�4b�

where

xk is the vector of strongly observed states (n ´ 1)

x0k in¯uence of strongly observed states on them-

selves (n ´ 1)
x1k in¯uence of weakly observed states on strongly

observed states (n ´ 1)
Fk,k)1 state transition matrix of the strongly observed

states (n ´ n)
G in¯uence matrix expressing the e�ect the weakly

observed states on the strongly observed states
(n ´ k)

ek vector of the weakly observed states (k ´ 1)
Lk,k)1 state transition matrix of the weakly observed

states (k ´ k).

Often, weakly observed states in vector ek are the state
variables representing wave functions with unknown
coe�cients.

Following the above, the a posteriori estimate of the
®rst component at the kth epoch in a wave cycle is

x̂0k � Uk;kÿ1x̂0kÿ1 � Kk�zk ÿ HUk;kÿ1x̂0kÿ1� �5�
and the estimation error is

~x0k � x̂0k ÿ x0k
� �I ÿ KkH�Uk;kÿ1~x0kÿ1 � KkHDke0 � Kkvk

�
Yk

i�1
�I ÿ Kk�1ÿiH�Uk�1ÿi;kÿi~x00 �Wke0

�
Xkÿ1
j�0

Yj

i�1
�I ÿ Kk�1ÿiH�Uk�1ÿi;kÿi

" #
Kkÿjvkÿj �6�

where

Dk � Uk;kÿ1Dkÿ1 � GLkÿ1;0
Wk � �I ÿ KkH�Uk;kÿ1Wkÿ1 � KkHDkYj

i�1
�I ÿ Kk�1ÿiH�Uk�1ÿi;kÿi � I; if i > j

�7�

In the estimation error, Eq. (6), the ®rst component is
due to the error in the initial estimate, the second
component is the in¯uence of weakly observed states on
strongly observed states, and the third component is due
to measurement noise. The matrix Dk propagates the
in¯uence of weakly observed states on strongly observed
states throughout the wave cycle. This is important

because, in conventional Kalman ®ltering, the conver-
gence of strongly and weakly observed states is sequen-
tial (Salychev 1995), with the strongly observed ones
converging ®rst. Therefore, the estimation of strongly
observed states is a�ected by weakly observed states,
which are yet to converge.

Assuming that the initial estimation error and initial
value of the weakly observed states (i.e. ~x00 and e0) in a
wave cycle are uncorrelated, the error covariance is

Pk � E��~x0k��~x0k�T �
� �I ÿ KkH�Uk;kÿ1Pkÿ1UT

k;kÿ1�I ÿ KkH�T
� �I ÿ KkH�Uk;kÿ1Wkÿ1E�e0eT

0 �DT
k HT KT

k

� KkHDkE�e0eT
0 �WT

kÿ1U
T
k;kÿ1�I ÿ KkH�T

� KkHDkE�e0eT
0 �DT

k HT KT
k � KkRkKT

k �8�

The optimal gain for minimum error covariance is
obtained when �o trace�Pk��=�oKk� � 0. After di�erenti-
ating Pk and rearranging appropriately, the equation for
optimal gain is

Kk � fUk;kÿ1Pkÿ1UT
k;kÿ1HT ÿ Uk;kÿ1Wkÿ1E�e0eT

0 �DT
k HTg

� fHUk;kÿ1Pkÿ1UT
k;kÿ1H

T � HkDkE�e0eT
0 �DT

k HT

� Rk ÿ HUk;kÿ1Wkÿ1E�e0eT
0 �DT

k HT

ÿ HDkE�e0eT
0 �WT

kÿ1U
T
k;kÿ1HT gÿ1 �9�

and the corresponding a posteriori covariance matrix is

Pk � �I ÿ KkH�Uk;kÿ1Pkÿ1UT
k;kÿ1

� KkHDkE�e0eT
0 �WT

kÿ1U
T
k;kÿ1 �10�

Using Eqs. (5), (9) and (10), it is possible to estimate
x0N from the measurement data during the cycle time t0
to tN as it is assumed that the strongly observed states
converge during this time. This is called forward
estimation (see Fig. 3). It is to be emphasized that
forward estimation is only used to determine the state
vector estimate at the end of the cycle. This estimate is
used to reconstruct its value backwards in time to the

Fig. 3. Modi®ed wave estimator
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beginning of the cycle. This is possible due to the
piecewise deterministic model description of the sys-
tem.

In order to reconstruct the estimates at t1, t2, t3 etc.
(except at t0), ek and x1k need to be estimated. More often
than not, however, an estimate of ek is of no interest, as
it normally contains the state variables for wave repre-
sentation. Therefore, it is advantageous to avoid esti-
mation of ek, but at the same time account for its
in¯uence on the strongly observed states. The following
method can be used to achieve this goal.

According to the previous assumptions, at t = t0,
x00 � x0. Therefore, if the measurements during the in-
terval t0 to tN are used to estimate x̂0N , it is then possible
to reconstruct the initial value x̂00 � U0;N x̂0N � x̂0 without
estimating ek and x1k .

Similarly, at the next epoch (t1), measurements dur-
ing the interval tN + T and tN + T can be used to re-
construct x̂1 as the initial condition for x̂00 during that
interval (see Fig. 3). In this approach, however, the es-
timates will have a time lag equal to the wave cycle.

It is also possible to use this technique to do esti-
mation in real time by collecting measurement data for a
complete wave cycle (NT, i.e. t0 to tN) and then using the
previously described algorithm from tN to t0 (forward
estimation). The initial value at tN is then reconstructed
(backward restoration) in real time. This can be repeated
for successive wave cycles, as shown in Fig. 4. In this
case, however, no estimate will be available for the du-
ration of the ®rst wave cycle (NT).

3 GPS/GLONASS±INS integration algorithm

GPS/GLONASS and INS have complementary error
characteristics; that is, an INS has a good short-term
accuracy, but the long-term accuracy is compromised by
error growth. In contrast, GPS/GLONASS may be
noisier in the short term, but the long term accuracy is
consistent. In addition, since GPS/GLONASS relies on
line-of-sight from the antenna to the satellite, any
shading problems will degrade the accuracy perfor-
mance. The motivation of GPS/GLONASS and INS
integration is to exploit the bene®ts of each positioning
system (Cannon 1992).

An open-loop GPS/GLONASS±INS integration
system can be represented by the simple block diagram
shown in Fig. 5 (Maybeck 1994).

In this indirect feed-forward con®guration, the esti-
mator plays the crucial role of generating corrections for
the INS data. It uses the di�erence in position and/or
velocity between the INS and GPS/GLONASS sub-
systems to estimate the errors in the inertial system. By
subtracting the estimated error from the inertial data,
optimal estimates of position, velocity, attitude etc. are
determined.

In order to evaluate the performance of the suggested
method, the estimator is ®rst implemented by a standard
Kalman ®lter, which is extensively used to integrate
GPS±INS systems (Cannon 1992; Schwarz and Zang
1994, Wolf et al. 1997). Secondly, the Kalman ®lter is
replaced by the MWE and their performances are
compared in terms of achievable accuracy. Although
few tests have been conducted with GPS/GLONASS
integrated with an INS, the methodology is essentially
the same in this case, since one combined position and
velocity is available from the GPS/GLONASS receiver.

3.1 Kalman ®lter

An INS system for a single axis (e.g. X-axis) may be
described as (Maybeck 1994; Salychev 1995)

d _PE � dVE

d _VE � ÿg/N � BE

_/N �
dVE

R
� dxN

_BE � ÿb1BE �
������������
2r2

1b1

q
w1

d _xN � ÿb2dxN �
������������
2r2

2b2

q
w2

�11a�

where

dPE is the position error in the X-axis [m]
dVE velocity error in the X-axis [m/s]
/N attitude error [rad]
BE accelerometer bias [m/s2]
dxN gyro drift rate [rad/s]
r1, b1 are the parameters of the shaping ®lter to

represent the accelerometer bias [m/s2 and s)1

respectively]Fig. 4. Real-time modi®ed wave estimator

Fig. 5. Open-loop GPS/GLONASS±INS integration scheme
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r2, b2 parameters of the shaping ®lter to represent the
gyro drift rate [rad/s and s)1 respectively]

w1, w2 driving white noise of unit intensity.

Here, the gyro drift rate and accelerometer bias are
modeled by shaping ®lters using ®rst-order Gauss±
Markov processes with di�erent parameters for each.
The measurement is the position di�erence between the
INS and GPS/GLONASS, where the latter's position
error is assumed to be measurement error.

PINS � PTrue � dP

PGPS � PTrue � v

zk � PINS ÿ PGPS � dP � vk �11b�
The process noise matrix for the model is obtained as

Q �
ZDT

0

U�t; s�GE�wwT �GT UT �t; s�ds

where

Sp1 is the spectral density of the input noise for the
accelerometer bias shaping ®lter [m2/s5]

Sp2 spectral density of the input noise for the gyro
drift rate shaping ®lter [rad2/s3]

T1 time constant of the accelerometer bias Markov
process [s]

T2 time constant of the gyro drift rate Markov pro-
cess [s]

DT sampling interval [s].

Equations (11a)±(11c) form the core model of the
Kalman ®lter for single-axis GPS/GLONASS±INS
integration.

3.2 Modi®ed wave estimator

In the MWE, the state variables are segregated into two
groups: strongly and weakly observed states. As the
di�erence between the INS and GPS/GLONASS posi-
tions is available as a measurement in this case, the
position error in the system model is the strongest
observable. The velocity error is related to the measure-
ment through ®rst-order di�erentiation and therefore is a
weaker state compared to the position error state.
The attitude error is one order weaker compared to
the velocity error. Overall these three state variables in
the system model are deemed as strongly observed states.

As mentioned earlier, the MWE models the input
disturbances, which are often the weakly observed

states, using piecewise deterministic curves or waves
instead of conventional shaping ®lters. In this case, the
accelerometer bias and gyro drift rate are deemed as
weakly observed states and are modeled using wave
representation. For example, representing them as
inclined lines gives

BE � C1 � C2t �12a�
Let e1 � BE; e2 � _BE; then

e1�0� � C1 � d1; e2�0� � C2 � d2 �12b�
Similarly, let e3 � dx; e4 � d _x; then

e3�0� � d3; e4�0� � d4 �12c�
Therefore, we have the following formulation:

x0 � �dPE; dVE;/N �T
e � �BE; _BEdx; d _x�T

�12d�

Uk;kÿ1 �
1 DT 0
0 1 ÿgDT
0 DT

R 1

24 35 �12e�

Lk;kÿ1 �
1 DT 0 0
0 1 0 0
0 0 1 DT
0 0 0 1

2664
3775 �12f�

G �
0 0 0 0
1 0 0 0
0 0 1 0

24 35 �12g�

e0 � �d1; d2; d3; d4�T �12h�
Equations (5), (9) and (10) will be used recursively with
various parameters described in Eqs. (12d) through
(12h) to estimate the state variables of the strongly
observed states.

4 Test description

A GPS/GLONASS±INS system was formed using the
Russian strapdown inertial system, I-42, and an Ashtech
GG24, which is a combined GPS/GLONASS receiver
used to provide independent position information. The
GG24 was operated in a mixed mode wherein measure-

�

0 0 0 0 0
0 Sp1

DT 3

3 0 ÿSp1 0:5DT 2 � DT 3

3T1

� �
0

0 0 Sp2
DT 3

3 0 ÿSp2 0:5DT 2 � DT 3

3T2

� �
0 ÿSp1 0:5DT 2 � DT 3

3T1

� �
0 Sp1 DT � DT 2

T1
� DT 3

3T 2
1

� �
0

0 0 ÿSp2 0:5DT 2 � DT 3

3T2

� �
0 Sp2 DT � DT 2

T2
� DT 3

3T 2
2

� �

2666666664

3777777775
�11c�
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ments from GPS and GLONASS satellites were used to
determine a single-point position.

The instrumentation was installed in a van and driven
at 70±80 km/h through the outskirts of Moscow in a
relatively open area with no major obstructions a�ecting
satellite visibility. Approximately 30 min of data was
collected using the system on 29 December 1995 with
typically 14 satellites in view during the test.

Since GLONASS does not implement selective
availability (SA), the nominal horizontal positioning
accuracy of the GPS/GLONASS system in a single axis
was about 15 m (RMS). Details of GPS/GLONASS
experiments and results can be found in Hall et al. (1997).

Di�erences between INS and GPS/GLONASS posi-
tions were used as measurement data input to the esti-
mator, as shown in Fig. 5. A Kalman ®lter was then
used to estimate the position, velocity and attitude
errors of the INS.

Truth values were generated by using the same Kal-
man ®lter with the di�erence between the INS and carrier
phase di�erential GPS/GLONASS positions as mea-
surement data. In this case, smaller values were used in
the R matrix since the di�erential positions were always
better than 0.5 m. Therefore, the position truth trajec-
tory was deemed accurate to the same level. Di�erences
between the Kalman-®lter estimated states using the
single-point GPS/GLONASS as input, and the truth
values using di�erentially corrected carrier-phase GPS/
GLONASS, were used to quantify the estimation error.

A second run of the data was carried out after re-
placing the Kalman ®lter by the MWE in the estimator
block. Again the estimation errors were obtained as the
di�erences between the MWE estimated values using
single-point GPS/GLONASS and truth values of the
parameters using di�erentially corrected carrier-phase
GPS/GLONASS.

5 Test results

Figure 6 gives the estimates of the INS position, velocity
and attitude errors along a single axis using the Kalman
®lter, while Fig. 7 gives the corresponding error of these
estimates. The error characteristics along the other
horizontal axis were similar.

As can be seen, the Schuler oscillation is dominant in
the INS position, velocity and attitude error. High-fre-
quency errors, mainly due to GPS/GLONASS mea-
surement errors, are superimposed on the INS errors. A
spike between 1000 and 1200 s is observed due to a large
error in the single-point GPS/GLONASS measurements.

Estimation errors are the di�erences between the
estimated and truth values, and contain mainly
high-frequency components. The position converges
quickly, as it has the strongest observability, while atti-
tude converges after position and velocity as it has the
weakest observability of the three states. Here, the input
noise is Q = Q0, where Q0 is the average input noise in
steady state. Q0 has been determined by modifying the
Kalman ®lter as an adaptive Kalman ®lter wherein the
measurement noise matrix is kept constant and the input

noise is estimated adaptively. The average of the esti-
mated input noise at steady state is computed and used
as Q0 as the system is assumed to be stationary.

Table 1 gives a summary of the estimation accuracy
during transition and steady state of the Kalman ®lter,
based on the values shown in Fig. 7. Here, it may be
observed that the attitude, being the weakest observable,
requires approximately 300 s to reach steady state,
wherein statistics of the parameters remain almost
unchanged after that time. The mean and root-mean-
square (RMS) values of the position, velocity and
attitude errors during the transition period depend upon
the quality of the initial estimates.

Table 2 gives the revised Kalman ®lter estimation
accuracy with various input noise values derived from

Fig. 6. Estimate of INS position, velocity and attitude errors using
INS±single-point GPS/GLONASS derived position in a Kalman ®lter

Fig. 7. Estimation error of INS position, velocity and attitude with
respect to the INS±d�erential GPS/GLONASS-derived truth values
using a Kalman ®lter
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the average steady-state values. The statistics of this
table were generated using only the steady-state values
of the errors, i.e. values after the ®rst 300 s. It can be
seen that the ®lter performance is optimum when the
input noise is equal to its average steady-state value, as
expected. With higher input noise (>Q0) the estimates
are noisier, and with lower input noise (<Q0) there is
some divergence as the mean error grows. In both situ-
ations the RMS errors become larger.

These results illustrate the limitation of a conven-
tional Kalman ®lter whereby the accuracy is limited by
the input noise. Within the scope of this type of model
representation, accuracies better than those presented
cannot be achieved.

During the implementation of the MWE, all common
parameters between the Kalman ®lter and the MWE
were held to the same values. Figure 8 gives the esti-
mation error using the MWE with a wave cycle duration
of 300 s, which is the approximate convergence time of
the attitude state in the Kalman ®lter. As a result, no
estimate is available for the ®rst 300 s, as mentioned
earlier, so that this ®gure shows the estimation error
only after that period.

Table 3 gives a typical case where the variance of e0 is
one tenth of the steady-state input noise. The wave cycle
duration is varied widely to determine the estimator
performance. Here, it is observed that the estimation
accuracy improves with an increasing wave cycle. Esti-
mation accuracies are poorer for wave cycles less than
250 s, but improve substantially for durations of around
350 s.

Table 3 also shows that when the variance of the
impulse function is decreased by one order of magni-
tude compared to the average steady-state input noise,
it takes slightly longer for convergence. This is why

the estimation accuracy is better with a wave cycle
greater than 300 s, the convergence time of the Kal-
man ®lter.

Tables 4 and 5 give the estimation accuracies using
di�erent values of the variance of e0. These tables show
that the estimation accuracy is inversely related to the
variance of e0, i.e. the lower the variance, the higher the
accuracy. With the variance of e0 much higher compared
to the average steady-state input noise (in Table 4), the

Table 1. Kalman ®lter estimation accuracy during the transition
and steady-state periods using Q = Q0

Transition
(s)

Position Velocity Attitude

Mean
(m)

RMS
(m)

Mean
(m/s)

RMS
(m/s)

Mean
(deg)

RMS
(deg)

100 0.035 0.590 0.005 0.021 )9.3E)4 3.6E)3
200 0.012 0.584 0.003 0.017 )2.8E)4 1.7E)3
250 0.003 0.580 0.002 0.016 )2.0E)4 1.6E)3
300 )0.006 0.558 0.002 0.016 )1.6E)4 1.6E)3
350 0.005 0.550 0.002 0.016 )1.5E)4 1.6E)3

Table 2. Kalman ®lter estimation accuracy of INS position,
velocity and attitude for di�erent input noise values

Input noise Position Velocity Attitude

Mean
(m)

RMS
(m)

Mean
(m/s)

RMS
(m/s)

Mean
(deg)

RMS
(deg)

0.01Q0 )0.037 1.408 0.003 0.031 )2.6E)4 1.8E)3
0.04Q0 0.082 1.060 0.004 0.026 )3.1E)4 1.7E)3
Q0 )0.007 0.558 0.002 0.016 )9.0E)5 1.6E)3
25Q0 )0.058 0.740 0.000 0.023 1.2E)4 2.8E)3
100Q0 )0.061 0.855 )0.001 0.031 1.3E)4 4.0E)3

Fig. 8. Estimation error of INS position, velocity and attitude with
respect to the INS±di�erential GPS/GLONASS-derived truth values
using the MWE

Table 3. Estimation error of INS position, velocity and attitude
using the MWE with cov(e0) = 0.1Q0

Wave cycle
(s)

Position Velocity Attitude

Mean
(m)

RMS
(m)

Mean
(m/s)

RMS
(m/s)

Mean
(deg)

RMS
(deg)

150 )0.400 1.247 )0.014 0.032 8.7E)4 2.3E)3
200 )0.258 0.996 )0.008 0.019 3.7E)4 9.7E)4
250 )0.200 0.814 )0.005 0.013 1.9E)4 5.1E)4
300 )0.147 0.695 )0.004 0.009 1.0E)4 2.7E)4
350 )0.128 0.654 )0.003 0.007 )1.0E)5 2.0E)7
400 )0.041 0.512 )0.002 0.007 2.8E)4 4.0E)4

Table 4. Estimation error of INS position, velocity and attitude
using the MWE with cov(e0) = 25Q0

Wave cycle
(s)

Position Velocity Attitude

Mean
(m)

RMS
(m)

Mean
(m/s)

RMS
(m/s)

Mean
(deg)

RMS
(deg)

150 )0.402 1.249 )0.014 0.034 8.8E)4 2.2E)3
200 )0.258 0.956 )0.006 0.019 )1.8E)4 1.0E)3
250 )0.105 0.748 0.000 0.013 )2.6E)4 9.5E)4
300 )0.018 0.576 0.000 0.013 5.8E)4 1.2E)3
350 )0.002 0.615 0.002 0.014 )6.3E)5 1.3E)3
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mean of the errors is generally smaller, but the estimates
are quite noisy. In contrast, with the variance of e0 much
lower compared to the average steady-state input noise
(in Table 5), the estimation errors are substantially re-
duced. It should also be noted that for higher variance
of e0, a large wave cycle (350 s in Table 4) deteriorates
the accuracy as the wave does not appropriately repre-
sent the drift and bias errors. This is also evident in
particular in the case of attitude in Table 3 for the 400 s
wave cycle.

It may be noted that, in contrast to the Kalman ®lter,
lowering the variance has not degraded the perfor-
mance. This is due to the representation of the input
disturbances within a deterministic scope as described
earlier and is an advantage of the MWE approach.

Tables 2 (input noise = Q0), 3 (wave cycle = 350,
400 s) and 5 (wave cycle = 350, 400 s) are used to
compare the performance of the Kalman ®lter and
MWE. It is observed that the INS position error esti-
mation accuracy is marginally better with the Kalman
®lter. However, the velocity error estimation precision is
nearly twice as good, and the attitude error estimation
precision is nearly eight times better with the MWE. In
addition, the improvement is more evident for weakly
observed states (i.e. attitude) compared to the strongly
observed ones (i.e. position and velocity). This is due to
the fact that the attitude error is weakly related to the
measurement data and strongly related to the gyro drift
rate. As the gyro drift rate is modeled more accurately
using wave representation, compared to a shaping ®lter
representation in a conventional Kalman ®lter, the state
variables which are strongly related to this bene®t more
by wave representation. In contrast, the position error is
strongly related to the measurement data and weakly
related to the gyro drift rate, hence it is largely a�ected
by the measurement error and bene®ts least by wave
representation.

6 Conclusions

It is observed that the MWE technique renders im-
proved performance in comparison with a Kalman ®lter
in situations where the input disturbances are of low
frequency, slowly varying in nature, and are compara-
tively weak observed states. This approach exploits the
fact that even if the system cannot be described in a

deterministic form, its forced solution at one point will
coincide with the deterministic homogeneous solution.
Hence, it is unwise to restrict the estimation accuracy by
the level of the input noise if it is possible to reduce the
estimation procedure to the homogenous solution
reconstruction. This means it is always possible to
divide the total estimation time into small pieces and
describe each piece using a simple deterministic model.
Later, the estimate from each piece may be accumulated
for reconstruction of the total state vector behavior.
This is why the estimation accuracy has improved in the
MWE case.

The accuracy of the MWE technique was compared
to that of a standard Kalman ®lter in an open-loop,
indirect feed-forward GPS/GLONASS±INS integrated
system. The Russian I-42 strapdown navigation system
was used as the INS and an Ashtech GG24 was used as
the GPS/GLONASS sensor. Di�erentially corrected
GPS/GLONASS carrier-phase measurements were used
to generate the truth trajectory.

Test results show that at steady state the estimate of
position error of the INS using a Kalman ®lter is mar-
ginally better than the estimate using an MWE. How-
ever, for velocity and attitude, the MWE yields two and
eight times better results respectively. The improvement
comes from the fact that the disturbances (i.e. the gyro
drift rate and accelerometer bias) are represented by a
deterministic means rather than by a shaping ®lter
driven by white noise.

Further studies are required to be carried out to in-
vestigate the advantages of the MWE for estimation of
the weakly observed states (e.g. INS accelerometer bias
and gyro drift rate), as it is likely to improve their esti-
mation accuracy even when they have not converged in
a conventional Kalman ®lter.
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